
15.  Angular region. By applying a suitable conformal mapping, obtain from figure 406 

the potential Φ in the sector -− 1
4 π < Arg[z] < 14 π such that Φ = -−3 kV if Arg[z] = -− 1

4 π 

and Φ = 3 kV if Arg[z] = 14 π.

Cheating and looking at the answer, I see that the bright student might have thought to 
apply a mapping of w=z2. This is interesting, because it is the same mapping applied to 
map a hyperbolic region onto a semi-infinite strip. So let me see what happens.
Clear["Global`*⋆"]

d2 = ImplicitRegion[0 ≤ x  -−∞ < y < ∞, {x, y}];

p1 = ParametricPlotThrough{Re, Im}(x + ⅈ y)2,
{x, y} ∈ d2, PlotRange → {{-−10, 30}, {-−20, 20}},
Frame → True, ImageSize → 150, AspectRatio → Automatic

What the heck, that doesn’t seem to do it. The picture seems to depend on what “apply” 
means in the text answer. True, w=z2 is “applied” to z, but evidently the text interpretation 
here is that I need to go from w to z, i.e. z=w

1
2 . Example 2, p. 765, where this problem 

comes from, states that the plates conform to a unit circle. Thus the left plot below will do 
to show the mapping of the -3 kV and 3 kV potentials, because the sector of interest within 
the unit circle is enclosed in the plot.

p2 = ParametricPlotThrough{Re, Im}(x + ⅈ y)0.5,
{x, y} ∈ d2, PlotRange -−> {{-−1, 3.5}, {-−3, 3}},
Frame → True, ImageSize → 200, AspectRatio → Automatic,
Epilog → Blue, PointSize[0.025], PointRe(x + ⅈ y)0.5 /∕.

{x → 0, y → -−10}, Im(x + ⅈ y)0.5 /∕. {x → 0, y → -−10},

Red, PointSize[0.025], PointRe(x + ⅈ y)0.5 /∕. {x → 0, y → -−1},

Im(x + ⅈ y)0.5 /∕. {x → 0, y → -−1},

Black, PointSize[0.025], PointRe(x + ⅈ y)0.5 /∕. {x → 0, y → 1},

Im(x + ⅈ y)0.5 /∕. {x → 0, y → 1};



p3 = ParametricPlotThrough{Re, Im}x + (ⅈ y)3.5,
{x, y} ∈ d2, PlotRange -−> {{-−1, 3.5}, {-−3, 3}},
Frame → True, ImageSize → 200, AspectRatio → Automatic,
Epilog → Blue, PointSize[0.025], PointRe(x + ⅈ y)0.5 /∕.

{x → 0, y → -−10}, Im(x + ⅈ y)0.5 /∕. {x → 0, y → -−10},

Red, PointSize[0.025], PointRe(x + ⅈ y)0.5 /∕. {x → 0, y → -−1},

Im(x + ⅈ y)0.5 /∕. {x → 0, y → -−1},

Black, PointSize[0.025], PointRe(x + ⅈ y)0.5 /∕. {x → 0, y → 1},

Im(x + ⅈ y)0.5 /∕. {x → 0, y → 1};

Row[{p2, p3}]

The above row answers the problem correctly, but it is not completely satisfactory. The 
mapping should include all the points in the domain, yet the arrowhead shape does not 
include the blue one, which is outside the problem. (I’ve experimented with 
ParametricPlot options but did not find anything which was effective.) On the right is an 
alternate function which seems better, plotted from the same region domain, but I don’t 
understand the exponent which it uses to get its mapping (in fact, this is just a contrived 
fluke). MMAStackExchange question 697354 deals with this exact mapping, yet advises the 

use of the 0.5 exponent for the π2  opening angle.  I got a helpful assist on this one from 

Gianluca Gorni in the Wolfram Community, https://community.wolfram.com/groups/-
/m/t/1639076?p_p_auth=4BV9yy38, who showed the advantage that discretizing can some-
times have,
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d2 = DiscretizeRegion@ImplicitRegion[0 ≤ x < 50  -−30 < y < 30, {x, y}];
ParametricPlotReIm(x + I y)0.5, {x, y} ∈ d2,
PlotRange → {{-−1, 3.5}, {-−3, 3}}, Frame → True,
ImageSize → 200, AspectRatio → Automatic

17.  Another extension of example 2. Find the linear fractional transformation z = g[Z] 

that maps Abs[Z] ≤ 1 onto  Abs[z] ≤ 1 with Z = ⅈ2  being mapped onto z = 0. Show that 

Z1 = 0.6 + 0.8 ⅈ is mapped onto z = -−1 and Z2 = -−0.6 + 0.8 ⅈ is mapped onto z = 1, so 
that the equipotential lines of example 2 look in Abs[Z] ≤ 1 as shown in figure 407 
(copied approximately below).

Clear["Global`*⋆"]

outerb = RGBColor[.113, .686, .925];
innerb = RGBColor[.784, .917, .984];
innerbw = RGBColor[.97, .97, .994];
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topgraphics =
Graphics{EdgeForm[Directive[Thick, outerb]], innerb, Disk[{0, 0}, 1]},

{}, {Point[{0.6, 0.8}]}, {Point[{-−0.6, 0.8}]}, {},

outerb, Circle{0, 0.8522}, 0.6022, -−
3 π

4
+ -−0.68,

π

7
-− 0.53,

outerb, Circle{0, 0.5144}, 0.6644, -−π + -−0.45,
π

7
,

outerb, Circle{0, 1.25}, 0.75, -−
π

2
+ -−0.91,

π

50
-− 0.7,

outerb, Circle{0, 2.55}, 1.85, -−
π

2
+ -−0.325, -−

π

3
-− 0.2,

outerb, Circle{0, -−2.068}, 2.931, 
π

2
-− 0.2,

π

2
+ 0.2,

{EdgeForm[Directive[outerb]], innerbw, Disk[{0.6, 0.8}, 0.03]},
{EdgeForm[Directive[outerb]], innerbw, Disk[{-−0.6, 0.8}, 0.03]},
{Text[Style[1, Medium], {0.07, 0.169}]},
{Text[Style[0, Medium], {0.07, 0.42}]},
{Text[Style[2, Medium], {0.07, -−0.23}]},
{Text[Style[3 kV, Medium], {0.15, -−1.1}]},
{Text[Style[-−3 kV, Medium], {0.185, 1.1}]},
{Text[Style[Y, Medium], {-−0.06, 1.2}]},
{Text[Style["Z1", Medium], {0.64, 0.9}]},
{Text[Style["Z2", Medium], {-−0.64, 0.92}]},
{Text[Style[X, Medium], {1.1, -−0.08}]}, Axes → True,

Ticks → None, AxesStyle → Medium, ImageSize → 200

1

0

2

3 kV

-−3 kV
Y

Z1Z2

X

LFT (linear fractional transformation) tends to signify the 3-point transfer task, but it is 
more than that. For mapping a circle onto another circle, the numbered line (3) on p. 749 is 
the one that tells how. It looks like

w[z_] =
z -− z0
c z -− 1

z -− z0
-−1 + c z

and the requirements for z0 and c are that z0 is the point destined to map to the new circle’s 
center, and c is the conjugate of z0. (Also, Abs[z0] < 1.) So in the present case
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and the requirements for z0 and c are that z0 is the point destined to map to the new circle’s 
center, and c is the conjugate of z0. (Also, Abs[z0] < 1.) So in the present case

w1[z_] = w[z] /∕. z0 →
ⅈ

2
, c →

ⅈ

2
;

-− ⅈ
2
+ z

-−1 -− ⅈ z
2

or

w2[z_] =
2 z -− ⅈ

-−2 -− ⅈ z

-−ⅈ + 2 z

-−2 -− ⅈ z

The cell above matches the answer in the text.

w3[{x_, y_}] =
-−ⅈ + 2 z

-−2 -− ⅈ z
/∕. z → (x + ⅈ y)

-−ⅈ + 2 (x + ⅈ y)

-−2 -− ⅈ (x + ⅈ y)

Chop[w3[{0.6, 0.8}]]

-−1.

Chop[w3[{-−0.6, 0.8}]]

1.

Pertaining to Chop, it uses a default tolerance of 10 -−10, here chopping a tiny wisp of imagi-
nary. 

w30,
1

2


0

I build some data to record the changes involved in the transformation.

so = 0,
1

2
, {0.6, 0.8}, {-−0.6, 0.8}, {0, 1}, {0, 2}, {0, -−1}, {0, -−2}

0,
1

2
, {0.6, 0.8}, {-−0.6, 0.8}, {0, 1}, {0, 2}, {0, -−1}, {0, -−2}
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Thread[w3[ so]]

Power::infy: Infiniteexpression 
1

0
 encountered. *

0, -−1. -− 5.55112 × 10-−17 ⅈ,

1. -− 5.55112 × 10-−17 ⅈ, -−ⅈ, ComplexInfinity, ⅈ,
5 ⅈ

4


botgraphics = Graphics[
{{Circle[{0, 0}, 1, {0, 2 π}]}, {Red, PointSize[0.025], Point[{0, 0}]},
{Green, PointSize[0.025], Point[{1, 0}]},
{Blue, PointSize[0.025], Point[{-−1, 0}]},
{Brown, PointSize[0.025], Point[{0, 1}]}, {Black,
PointSize[0.025], Point[{0, -−1}]}}, Axes → True, ImageSize → 200];

data = "0", 0,
1

2
, {0, 0},

{"Z1", {0.6, 0.8}, {-−1, 0}}, {"Z2", {-−0.6, 0.8}, {1, 0}},
{"-−3kV", {0, 1}, {0, -−1}}, {"3 kV", {0, -−1}, {0, 1}};

textbox =
Text@Grid[Prepend[data, {"Old Label", "Old Point", "New Point"}],

Frame → All, Background → {None, {Lighter[Yellow, .9],
{White, Lighter[Blend[{Blue, Green}], .8]}}}];

Row[{topgraphics, botgraphics, textbox}]

1

0

2

3 kV

-−3 kV
Y

Z1Z2

X-−1.0 -−0.5 0.5 1.0

-−1.0

-−0.5

0.5

1.0

Old Label Old Point New Point
0 0, 12  {0, 0}
Z1 {0.6, 0.8} {-−1, 0}
Z2 {-−0.6, 0.8} {1, 0}

-−3kV {0, 1} {0, -−1}
3 kV {0, -−1} {0, 1}

A glance at the cell above shows the flips and changes due to the current transformation.

19.  Jump on the boundary. Find the complex and real potentials in the upper half-plane 
with boundary values 5 kV if x < 2 and 0 if x > 2 on the x-axis.

Clear["Global`*⋆"]

d2 = ImplicitRegion[-−∞ < x < ∞  0 < y < ∞, {x, y}];

grap = RGBColor[0.529, 0.474, 0.694];
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ParametricPlot[Through[{Re, Im}[x + ⅈ y]],
{x, y} ∈ d2, PlotRange -−> {{-−1, 3.5}, {-−3, 3}},
Frame → True, ImageSize → 200, AspectRatio → Automatic,
Epilog → {{grap, Dashed, Thick, Line[{{2, -−10}, {2, 10}}]},

{Text[Style["U1=5", Medium], {1.5, -−0.15}]},
{Text[Style["U2=0", Medium], {2.5, -−0.15}]}}]

Judging from the text answer, this problem can be modeled against example 3 on p. 760. 
Physically, I can imagine two plates being rotated apart until the angle of separation is π. 
The combined potential Φ is calculated according to one of two formulas. 
Φ[x_, y_] = a + b Arg[z]

a + b Arg[z]

Solvea + b -−
1

2
π ⩵ 0 && a + b

1

2
π ⩵ 5, {a, b}

a →
5

2
, b →

5

π


Φ[x_, y_] = a + b Arg[z] /∕. a →
5

2
, b →

5

π


5

2
+
5 Arg[z]

π

The text does two things which make the above cell unequal to the text answer. First thing 
is to ignore, cancel, or eliminate the a factor. The second thing, which is not discussed in 
example 3, is to compensate the z value for the separation of the fulcrum point from x=0.  
That is, the text answer is 
5 Arg[z -− 2]

π

Which seems like a very good answer, and I don’t doubt there is some reason the a drops 
out. Going on to the determination of F, example 6 on p. 761 takes care of that with a 
simple formula.
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Which seems like a very good answer, and I don’t doubt there is some reason the a drops 
out. Going on to the determination of F, example 6 on p. 761 takes care of that with a 
simple formula.
eFF[z_] = a -− ⅈ b Log[z]

a -− ⅈ b Log[z]

If I stick with the non-zero a, I would have to build it as
5

2
-−
5 ⅈ

π
Log[z -− 2]

However, having dispensed with the a= 5
2 , the text answer stays rid of it and reports the 

remainder as F.
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